1. 1-wire C driver (agranet) Communications Protocol Specification 2

2. GRS USagE ..ot 3
B HOME 5
B L ANy SIS . ottt e 6
3.1.1 Sensor Project - Initial ANAlYSISot 7

3.2 DEPIOYMENT . . 14

B2, L DEPIOYMaAN . ot 15

3.2.2 ROULEr DEPIOYMENt . . oottt ettt e e e 17

3.3 DBVRIOPMENE . ottt e 18

3.3.1 AgraStore Testing Private Keys 19

3.3.2 AgraStore Web Service DevelopmMeNto 22

3.3.3 Deployment Manager (ReQUIFEMENTS) oottt t ettt e 25

B HAIAWAIE . . .ot e 27

BiA. L SENSOIS o ot v it ettt e e e 28

B4 L L NEPIUNE T-10 ..ottt e et 29

B4 L2 RAINEWILLL .ttt e e e 30

B SO AN . oo 31

3.5.1 Agranet build instructions (1-wire C DIIVEIS) e e 32

3.5 2 AGIASUIVBY . .ottt e 33

3.5.2.1 INStAllatiONo 34

4. SMArt ViSION ANAlYSIS . . . oot 36

5. Web Application Requirements (Draft) 37

B. WD SBIVEIS . . .o 38

1-wire C driver (agranet) Communications Protocol
Specification

Status

Current Status: As of 10/15/2011this protocol is considered a work in progress
Current Specification Version: v0.0.a

Communication Channels: Communication will occur via standard input (stdin) and standard output (stdout) using the ACSII character set

Commands

Each command issued will consist of the following:

1. The command name in lower case (TODO: Change to upper case)

2. Alist of zero or more arguments. Each argument must be separated by one or more SPACE " " characters. There must also be one or more
SPACE "™ characters separating the command from the first argument.

3. ANEWLINE "\n" character must occur after the command or argument list and signifies the end of the command

Example: <command> (argl arg2 ... argn)\n

Command Listing

list - Displays the serial numbers of all devices present / recognized on the 1-wire network
The response will be a new line with a single integer value, n, ranging from 0 - MAXDEVICES. This value represents the number of devices found. After
this line, there will be n more lines of text, each line containing the serial number of a device on the network.

get <argl:device serial number> - get value(s) from the device associated with the specified device serial number. This command expects a single
argument in the form of a 16-character string expressing the 8-byte device serial number in hexadecimal. The response will be sent on a single line of ascii
text.

Supported Device Families: 0x1D (counter), 0x10 (temperature)

The server first checks to see if the argument is properly formatted. If the argument is not an 8-byte hex value, the response will be "INVALID_SERIAL".
Next the, server will check to see if the specified device family is supported by this command (see Supported Device Families section of this command). If
the device is not supported, the server will respond with "DEVICE_NOT_SUPPORTED". Next, the server will examine the serial number of each device
present on the network and compare it the serial number specified in argl. If the device serial number specified in argl was not found on the network, the
server will respond with: "NO_SUCH_DEVICE". Finally, the server will respond with the value of teh specified supported device or

with "DEVICE_READ_FAIL" if the device exists but could not be read.

Server Response based on supported device family:
0x10 - a single floating point value with 1 digit after the decimal and up to 5 digits before the decimal (eg: 51.4).
0x1D - A colon separated list of 4 unsigned long integers (eg: 5345:132456:1:536).

GPS Usage

Our current GPS unit in testing is a BU 353 USB GPS

Basic Specs:
SiRF Star Il e/LP
GPS protocol
NMEA 0183

SiRF Binary
Transfer rate

4800,n,8,1 for NMEA

The GPS unit outputs NMEA 0183 binary data for a serial connection. In order to get this to work on our routers, you must have kmod-usb-serial-pl2303 c
ompiled and installed. This is for the (Prolific PL2303) chipset.

There are two different ways to capture the data. Either you can gather raw NMEA data and print it. With a few scripts this can be used to send the data to
multiple clients or you can use a Net Daemon to host the data locally and a client to grab the data and use it however you want.

Method 1 - Standard Raw Output
Required Packages:

netcat (Busybox's nc will not listen on ports)
coreutils-stty (Setting speed on serial ports)
#Use to set serial port speed

stty -F /dev/ttyS0 4800 sane

#Use to print raw data

cat /dev/ttySO

After the cat command is run you will see a number of strings print out. The string starting with GPGGA defines the location coordinates. With a script we
clean out unnecessary strings and feed coordinate data using "netcat"

Method 2 - gpsd Daemon

#This installs gpsd onto router

opkg update

opkg install gpsd

#This will start the daemon which automatically posts data on localhost:2947
gpsd /dev/ttyUSBO

A gpsd client must be used to gather GPSD data and use it effectively. Their are quite a few clients already that use gpsd protocol. | tested tangogps on
my Ubuntu box and it works great.

GPSD clients are generally written in C, but can also be written in python, perl,....etc.
In our case, we will use probably write client code in Python, which | believe will require gps.py library.

Sample Python Code for pulling GPS coordinates (Not yet tested)

import gps, os, time

session = gps.gps()

while 1:
os.system('clear’)
session.query(‘admosy’)
a = altitude, d = date/time, m=mode,

o=postion/fix, s=status, y=satellites

print

print ' GPS reading'

print*
print 'latitude ', session.fix.latitude

print ‘longitude ', session.fix.longitude
print 'time utc ', session.utc, session.fix.time

print ‘altitude ', session.fix.altitude

print ‘eph ', session.fix.eph
print 'epv ', session.fix.epv
print ‘ept ', session.fix.ept
print 'speed ', session.fix.speed
print ‘climb ', session.fix.climb
print

print ' Satellites (total of', len(session.satellites) , ' in view)'
for i in session.satellites:

print \t', i

time.sleep(3)

Home

This is the home of the Information Technology space.

To help you on your way, we've inserted some of our favourite macros on this home page. As you start creating pages, blogging and commenting you'll
see the macros below fill up with all the activity in your space.

Recently Updated

Urbanalta Archive
Aug 05, 2013 updated by Sumit Khanna

AgraStore Web Service Development
Sep 24, 2012 « updated by Anonymous ¢ view change

jenkins-AgraStore.png
Sep 23, 2012 - attached by Anonymous

DeployMan
Sep 16, 2012 « updated by Anonymous ¢ view change

Router Deployment
Sep 13, 2012 « updated by Anonymous ¢ view change

Deployment
Sep 13, 2012 « created by Anonymous

AgraStore Testing Private Keys
Aug 29, 2012 « updated by Anonymous e view change

Web Structure.png
Aug 16, 2012 « attached by Anonymous

Web - Development.png
Aug 16, 2012 » attached by Anonymous

Web Servers
Aug 16, 2012 « created by Anonymous

Deployment Manager (Requirements)
Aug 06, 2012 « created by Anonymous

Installation
May 28, 2012 « updated by Anonymous ¢ view change

AgraSurvey
May 28, 2012 « updated by Anonymous ¢ view change

future-dir-layout.png
May 27, 2012 « attached by Anonymous
current-dir-layout.png

May 27, 2012 « attached by Anonymous

Navigate space

https://bigsense.io/display/it
https://bigsense.io/display/~djsumdog
https://bigsense.io/pages/diffpagesbyversion.action?pageId=327744&selectedPageVersions=7&selectedPageVersions=6
https://bigsense.io/pages/diffpagesbyversion.action?pageId=327758&selectedPageVersions=5&selectedPageVersions=4
https://bigsense.io/pages/diffpagesbyversion.action?pageId=327757&selectedPageVersions=4&selectedPageVersions=3
https://bigsense.io/pages/diffpagesbyversion.action?pageId=327689&selectedPageVersions=2&selectedPageVersions=1
https://bigsense.io/pages/diffpagesbyversion.action?pageId=327760&selectedPageVersions=4&selectedPageVersions=3
https://bigsense.io/pages/diffpagesbyversion.action?pageId=327756&selectedPageVersions=4&selectedPageVersions=3

Analysis

® Sensor Project - Initial Analysis

Sensor Project - Initial Analysis

Green Station Sensor Relay Project

Analysis and Notes — Sumit Khanna
V0.5

Introduction

| was originally brought into the Green Station project by Andrew Retting and Michael Bolan. The Green Station is a research project aimed at analysis of
water runoff using remote sensor technology. It involves many individual researchers, non-profits and municipal agencies. My roll in the project is to
provide my expertise in Linux programming, embedded devices, web services and service orientated architecture.

The following document provides an initial analysis of the work I've done so far and suggestions for architecture considerations going forward. The scope
of this document is limited to my role in installing operating systems on the relay stations, integrating USB hardware and designing software to transmit,
receive and aggregate data.

Hardware

The primary hardware required includes sensors and some type of embedded computer to retrieve data from those sensors and transmit back to other
computers (databases, 3rd party services, etc.) For cost effectiveness we looked at repurposing standard consumer home routers such as the Cisco
/Linksys E2000L.

Commodity routers have several advantages over many single board computer systems. Although not as powerful some general purpose embedded
boards, they contain a considerable amount of processing power for their price. Mass production for consumer use helps keep that cost reasonable and
there is a large base of enthusiasts that repurpose these units using Linux distributions such as DD-WRT, OpenWRT and Tomato.

Initially we attempted to repurpose a Cisco/Linksys E2000L, but its OpenWRT support was still listed as a "Work in Progress" on the community site.
Gaowei, A programmer that Michael and Andrew had been working with from China, suggested using the Cisco/Linksys WRT160NL instead and supplied
us installation instructions for flashing the router with OpenWRT.

For the sensor, we used a Dallas 1-Wire to USB adapter and a temperature sensor for the initial proof of concept. Other hardware includes breadboards,
jumper kits (for prototyping) and USB to TTL-3.3v Serial cable for diagnostics on Cisco/Linksys devices.

Software

We initially installed DD-WRT on our E2000L router as OpenWRT support was limited. Although DD-WRT is a fully working Linux distribution, it's become
more closed in its development and turned into more of a commercial venture. It was difficult to get additional packages for 1-wire software installed and it
looked as if packages that did at one time exist for DD-WRT have long since been abandoned.

OpenWRT has a large community of support and a very easy to use build system to cross-compile applications for embedded applications. We were
successful in installing OpenWRT on the WRT160NL. We were also able to install One Wire File System (owfs) from the OpenWRT package repository.
Once OWFS was running, we were able to plug in our 1-wire USB adapter and immediately read our temperature sensor data.

Working Proof of Concept

The following is the WRT160NL, outside of its case, running OpenWRT and with a temperature sensor plugged into its USB port:

.,

And here is the data from the temperature sensor using the OWFS HTTP server:
= 3 N tigersclam- 455

10.0C7BB5010800

uncached vemion

up [tineczoey

address 1N TR B S0 | RO 56
alis

orel 56

die Cr

family 10

il }IK.’?HH.‘H]II]HIII
lacator FFFFFFFFFFFFFFFF
pavwer MO (1)

present YES (1)

r_nddress || SSIEN]ESTEOC 10
r_id OO0 B3TBOC

iemphigh] | CHANCE |
'" " T m [CHANCE |
Ir“ shror _.|: "IANI.I__
m—— = _I:H.l.hl.'.t_

Terminology

The device we're using was originally a router/gateway. Essentially, a consumer/home router is just a simple embedded Linux device that includes a
wireless adapter, two Ethernet ports and a network switch. Although OpenWRT's default configuration is also that of a gateway device (it provides DHCP
and Network Address Translation or NAT between the WAN port and the Ethernet switch), this configuration will be changed to turn this device into a
specific purpose embedded device.

For clarity, the device, in its repurposed form, will be referred to as a Sensor Relay for the remainder of this document.

Data

OWEFS provides three ways of accessing the data. One is to use the file system itself; browse to the file representing the sensor and read it. It's important
to note these are not real files, but virtual files. Reading from a sensor calls the OWFS API and pulls the data as it is currently from the sensor.

The second way of retrieving data is using the built-in HTTP server. The built in server is designed more for diagnostics or a real time view for users that
simply need to read sensors at a given moment. It's not designed for relaying information to other sources or databases.

The third way is to use owserver. OWFS provides a service, with its own protocol, that can be connected to remotely and provide sensor information. Both
owfs and owhttp can connect to this server, so it's possible to have owfs running on one computer, pulling remote data from another machine running
owserver. It also allows multiplexing as owserver can be the primary system reading from the 1-Wire USB adapter, providing that data to multiple readers.
For our purposes, we will most likely run either owfs or owserver+owfs on the sensor relay. The owserver application isn't part of the existing owfs package
we are using, but it is trivial to build and repackage if needed.

Security

Standard Linux security considerations should be put in place on the sensor relays. Although the data isn't very sensitive, precautions should be taken so
unauthorized people will not be able to get in and use the devices. The following considerations should be enough to have a reasonable amount of security
on our sensor relays:

* Simplified iptables based firewall that allows SSH (port 22) and whatever service protocols we determine are necessary for the sensor data; deny
everything else

* Modify the /etc/security/access.conf to only allow SSH connections for our root and user accounts

® Using SSH keys to login to the devices instead of passwords

® Run nessus / nmap on the devices to ensure only the services we need are running

Data Architecture

There is a lot to be considered in regards to handling the actual sensor data. There are two basic ways to handle the data. Data can be processed on the
sensor relay itself and transmitted to services straight from the device. Data could also be pushed to a central server (or have the server pull the
information) and have a server log and process that information.

The advantage of processing the data on the devices themselves is that each device can be independent and the data immediately available. However,
the devices have limited processing power, data can not be aggregated with the data from other devices (unless we make them aware of one another) and
adding additional services would mean pushing out updates to the routers.

A central server that either pulls data or has data pushed to it has the advantage of keeping the on-device processing to a minimum, allowing any changes
to formatting and data to occur in one central location. However, if centralized services go down or there is network interruption, that data will be
unavailable until services are restored.

Sample Rate / Frequency

The rate at which data is sampled is an important factor to software design considerations. The 1-wire system itself is designed for low speed sensors and
not for systems requiring high sample rates. Reading the temperature sensor takes less than a second, but there is a significant delay and it is not
instantaneous.

Discussions about the sample rate so far have placed it into the one-minute rage. This would allow for more than enough time to process the data on the
sensor relay itself. The sample rate would of course be configurable. Benchmarks may need to be preformed to determine the maximum sample rates that
can be achieved without a loss of precision.

Timestamps

Timestamps should be in the format 64-bit standard UNIX timestamps (number of seconds since the epoch / January 15, 1970) for transmission to any of
our central servers. Dates and times should always be stored in UTC for our own databases. Time can either be pulled from an external GPS device or
using the Network Time Protocol (NTP) to synchronic the sensor relay's system clocks. For external services and formats, they should be translated
appropriately.

Programming Language Considerations

More experimentation is needed with the sensor relays to see what languages can be supported. Using a higher-level language such as python would
allow a higher degree of maintainability at the cost of some space for the language interpreter and possibly speed. If these become an issue, it is also
possible to write applications in C and cross-compile them for OpenWRT on a standard Linux machine.

Diagnostic Page

OpenWRT comes with the LuCI web interface intended for standard router configuration. For the sensor relay, this default web server can either be
modified to post a customized diagnostic page showing device and sensor information, or it can be removed and replaced with another light weight HTTP
service such as lighttpd or nginx.

Rolling Logs

If the network connection goes down, information that needs to be pushed or pulled may be lost without some type of buffer. A simple queuing system
would place all the data as it comes in to a queue with a given time stamp. As data is processed, pushed or pulled, everything with a timestamp previous
to the current would be cleared. Suggestions have included using an sglite database for the queue.

Direct Transmission

Gresain Slation
Barver Clusber

Centralized Aggregation

Drain { Sensors (it
Sensor Relay
Drain / Sensors s
Sansor Relay
Green Station
Server Cluster
Drain / Sensors Lo
Sensor Relay

System Updates

System updates can be pushed to the sensor relays using SSH. Once the prototypes have an established base of software, installations for repurposing
the routers should be made as automated as possible. A set of installation scripts should be created that can be re-run at any time to put the sensor relay
into a default and current state.

For the initial Green Station project, if an update is pushed that breaks the software to the point where the sensor relay cannot be reset remotely, the
device will have to be serviced manually. While this is trivial for the initial project, as the project grows it will be important to have a test set of devices
which updates will be pushed out to first and be allowed to run for a predetermined amount of time against automated tests. This will ensure updates that
could cause problems are not inadvertently pushed to sensor relays that may be difficult to service manually.

What to Do Next

® Plug in multiple sensors on different USB connectors and make sure OWFS supports multiple USB devices

® Test using USB memory sticks for additional store for application packages and data.

® Experiment with our breadboards and pressure sensors (we have an oscilloscope in the lab. We just need a DC power source and alligator clip
wires to test them and make sure they give us pressure readings)

® Repurpose Andrew's applications written for this thesis research for this project to get an initial proof of concept that can be used for demos

® Experiment with USB GPS hardware for Linux for pulling in location and time

® Begin work on a solid software architecture going forward.

Appendix A - Installation

Installing OpenWRT on the WRT160NL is fairly straightforward. We used the OpenWRT 10.03-rc3 firmware image for our router profile.

. Connect a standard desktop computer running Windows or Linux to the switched ports on the WRT160NL (not the WAN port)

. Either setup the desktop for DHCP and get an IP address or statically set it to 192.168.1.2 on the 255.255.255.0 subnet

. Login to the admin screen in the routers web interface by going to http://129.168.1.1 and using the default username and password: admin/admin.
. Go to the Firmware Update section in the Administration menu and upload the image openwrt-ar71xx-wrt160nl-squashfs.bin

. Wait for the file to upload. The update will fail to install. Wait for it to reboot.

. When the router reboots, only the right LED on the router will be blinking

U WNE

http://129.168.1.1

7. Use trivial FTP (TFTP) to upload the OpenWRT firmware to the router
a. On Linux:
i. tftp> connect 192.168.1.1
ii. tftp> mode binary
iii. tftp> put openwrt-ar71xx-wrt160nl-squashfs.bin
b. On Windows:
i. tpfp -i 192.168.1.1 PUT openwrt-ar71xx-wrt160nl-squashfs.bin
8. Wait for the router to reboot
9. Open http://192.16.1.1:3001 to view the OpenWRT LuCl console
10. Login as root (password is blank)
11. Set the root password within the menus and enable SSH access

Installing OWFS on OpenWRT is fairly straightforward as well. Once OpenWRT is running on the device:

SSH to 192.168.1.1 (using Putty on Windows or the command line SSH in Linux) with the username root.
Use the password set in the LUCl web console

Run "opkg update” to get the latest package list

Run "opkg install owfs" to install One Wire File System

Run "mkdir /mnt/owfs" to create the OWFS mount point

Run "owfs —u —m /mnt/owfs" to start OWFS and have it search for a USB device

Navigate to /mnt/owfs to see the sensor data

NoohwnpE

http://192.16.1.1:3001

Deployment

DeployMan

Introduction

DeployMan is a simple set of scripts that allow for deploying packages, configurations and running arbitrary commands on the Sensor Relays. Currently, it
pulls most of its data from a set of files in a configuration directory. In the future, | hope to pull most of this configuration form the database instead to avoid
duplication. Currently the only data duplicated between the database and the files are the RSA verification keys.

Configuration Folder Structure

Currently, this folder structure exists at pascal.urbanalta.com:/urbanalta/deploy/relays:

-- configs
| -- bioswale
| -- dev0l
| -- paverent-al t awat er
| -- pavement - nept une
“-- rai nGauge
-- known_hosts
-- rsaKeys
T-- dev0l
-- sites
| -- dev0l
-- gls
-- sshKeys
| -- dev0l
| -- devO01. pub
|-- gls
“-- gls.key.pub

Configs

The configs directory contains individual relay configurations. These are the files stored in /etc/agrasurvey/gm.conf on the individual routers and used for
AgraSurvey Configuration. In these configuration files, the symbol %RelayName% is replaced with the identifier in the sites configuration listed below

Known Hosts

File containing SSH key fingerprints for hosts. Each relay must have its fingerprint in this file in order for software to be deployed to it.

RSA Keys

This directory contains site keys used to sign sensor data packages

Sites
Files that contain a listing of relays and their configurations for individual sites. They use a bar (|) separated format:

® <host> | <config> | <Relay Name>

192. 168. 150. 10| pavenent - al t anat er | 1- Per mAsphal t
192. 168. 150. 11| pavenent - al t awat er | 2- Per nConcr et e
192. 168. 150. 12| pavenent - al t awat er | 3- Concrete
192. 168. 150. 13| pavenent - nept une| 4- Paver 1

192. 168. 150. 14| pavenent - nept une| 5- Paver 2

192. 168. 150. 15| pavenent - al t awat er | 6- Paver 3

192. 168. 150. 16| bi oswal e| bi oswal e

192. 168. 150. 17| r ai nGauge] r ai nGauge

The <Relay Name> is used to fill in the %RelayName% place holder in the AgraSurvey configuration file after deployment to individually identify the router.

SSH Keys

https://bigsense.io/pages/createpage.action?spaceKey=it&title=Configuration&linkCreation=true&fromPageId=327758

The SSH keys used to connect to the routers and issue commands. Each site has one set of keys. On the router, these keys must be installed in /etc
[dropbear/authorized_keys. This can be done using the following command:

ssh -0 User KnownHost sFi | e=<confi g di r>/known_hosts <host name>

Commands

Usage: Depl oyMan <config direcotry> <site> [depl oy-config|install <package>|run <comrand>]

* deploy-config: deploys both the /etc/agrasurvey/gm.conf configuration file and the /etc/agrasurvey/key.pem RSA key.
® install: installs ipkg files by copying them to /tmp and then running opkg --force-downgrade install. Supports wildcards for multiple packages
® run: Runs command

Adding a new Relay to an Existing Site

Adding a new relay to a site requires the following:

® Adding the new relay's SSH fingerprint to the known_hosts file in the configuration directory (this is shared between all sites)
® Adding the SSH site key to the relay's authorized_keys file so SSH connections can be made without a password (must be done manually)
® Edit the file sites/<site_name> and add the new relay's configuration entry

Adding a new Site

An RSA site key must be generated for each new site and placed in the configuration directory under rsaKeys/<site name>. It must also be added to the Ag
raStore database. This is currently done by adding the entries manually to the DDL directory within the project's source code and pushing it back to Version
Control. The new DDLs with the keys will then be loaded into the database.

A new ssh key must be generated as well for each site and placed in the configuration directory under sshKeys/<site name> and sshKeys/<site name>.pub
respectively. The public SSH key should be installed manually to each of the routers in the new site.

Finally, a configuration file, sites/<site name> should be setup with all the correct information for the site's relays. New configuration files may be
necessary. Configuration files can be shared across sites because the %RelayID% is what is used to verify the data signatures from a particular site.

Building into Jenkins

Jenkins is used to deploy each site. Development is deployed automatically whenever any packages are pushed to Version Control that are designed to be
deployed to the relays including Python modules and AgraSurvey.

Permissions

The SSH keys must be accessible to Jenkins. Run chown root:jenkins <key> for each of the SSH keys and chmod 640 <key> on the private key files.

https://bigsense.io/pages/createpage.action?spaceKey=it&title=AgraStore&linkCreation=true&fromPageId=327758
https://bigsense.io/pages/createpage.action?spaceKey=it&title=AgraStore&linkCreation=true&fromPageId=327758
https://bigsense.io/pages/createpage.action?spaceKey=it&title=Version+Control&linkCreation=true&fromPageId=327758
https://bigsense.io/pages/createpage.action?spaceKey=it&title=Version+Control&linkCreation=true&fromPageId=327758
https://bigsense.io/pages/createpage.action?spaceKey=it&title=Version+Control&linkCreation=true&fromPageId=327758

Router Deployment
Initial Setup

Deployment can be setup through Jenkins and the DeployMan project, however some initial setup must be done manually for now on the routers. This
setup includes installing necessary dependency packages like Python, Python modules, formatting the USB stick, etc.

Formatting the USB Stick

The USB stick must be formated before use if it hasn't been so already. The preferred file system in ext4. It is not necessary to mount this USB drive as
AgraSurvey's startup script will do so automatically and create all the necessary directories on it if they do not already exist.

nkfs. ext4 /dev/sdal

Installing Packages

opkg update

opkg install python

opkg install |ibusb

opkg install distribute
opkg install python-sqglite3
easy_install rsa

Setup Name Server

The file /[etc/resolv.conf is a symbolic link to /tmp/resolv.conf. Delete this link and create a static file to the Urbanalta DNS server available at your site. The
closest DNS server to your router can be found in the Server Lookup Table

rm/etc/resolv. conf
echo "naneserver 192.168.160. 100" > /etc/resolv. conf

https://bigsense.io/pages/createpage.action?spaceKey=it&title=Server+Lookup+Table&linkCreation=true&fromPageId=327757

Development

® AgraStore Testing Private Keys
® AgraStore Web Service Development
® Deployment Manager (Requirements)

AgraStore Testing Private Keys

Development

Endpoint URL: http://dev-services.urbantla.com/agrastore/api

To understand how to use these keys, please refer to AgraData XML Format and http://penguindreams.org/blog/signature-verification-between-java-and-
python/

Development Site 1

Private Key:

————— BEG N RSA PRI VATE KEY-----

M | EpQ BAAKCAQEAuU+z| DLOTVKCt r FK50GQ Lf ui MCYhpzdj Pnm2SdYoac YXWhcLF
GBAKNCKPJj yRmoCr t JZFk/ C73azL6kR41r OXUndl Zw7 CuN85D0PZgWDdHX4J Wyl O
cGVBUHTOAQT dC/ X31aWFPt uul h8W CALY+mht GvnUSunKl uM3aKhl+t NZN3dV7j
YhVBZnNFhXqg+ny U9/ 9xBakHmOcDr / sKqKJu4/ Lz8UTr | sLDaqEQoChj vpGUbnNyg
Fnvz OgAXOqGa5r 3MWngNUBEQPz JkVZDR7k PMF+ghl gNf f YgTf WDl WESp6d7Q0B
hSCBNDCvDI ¢/ r kAGB4P1npgkwCogxyC KkCOl Q DAQABAoI BAQC3JHZQu42noybe
Q xJj cDYOl vMgsyvRt ZMW8BKdFBsTOY] f t JodVEKzi pn9/ Jc1lyd OX0j x| XGasp7P
zy00sZ1Si GmlWhD7R+Rl eFBJao3/ MAMVOy 1EKHbnf bSMAG6HRr ON5j dbeXHIGE 53
e3d4XX+/ 8ghAr 1lesZaqFMuhsZ7z1 8SFeWHTMraVgDt Wi E9KxFgl ZN8u66Xx3EPRI
BVakm Z360+yr P1nCs CBOakok/ Rng28CRJ I / v1kWEzZOP7nbst gQeDyCUbV/ ZLo
hVLkQknmb502xwx B4PFC6pw bk VdSCq49XJLB5BDV5gVTwlsdcf COf hl Lt +pVKmQ0
4myORyj 9A0GBAPOUqGkx PROUFNEDEGNP 7 XYWMXZLE/ z2nSNEQ QHgg5r i Egg2i B
24QDzcUR/ 8TmrbDb7nLW6EMu2d04QUgi eYYC LNC8Yk 98qOR3CPx 6 XBWFHEAO7 Rw
A/ JOB/ UWUBW f XMwQb D5KPAEMW 35KvbK+e9zxt f u3zZ2MwzOw f V2f AoGBAWS
uKc2+JennSj VH7pAGAuJbegBNREMA0SBUVLGBCWZM Uzh2f | Yuf Q6DI EXQPI 271
hM IXTLWysRpf / O/ +i XSHZWMWF1 2XMHI 9el +0aw0bCq6k4UCCUCTBY Xvvx5Dg00OXS
HpgZWIXF4Knj FHswt Rpt i ¢l HBsr JUBbVA460ux| | LAOGAQVDNWb4y 1j JLUFaX+BPQ
ZRKj Yi LLOF | yi XeQ UcReVF70nbgcLVj | K5+FHsWBz Sbun6G24ZGneuGOz HCr y 9y
CXl MBA3G70hF3MapzaVWaKKHIgwpNY56j gf | Qukf dZKvcFCs 3nZZs G2DgP7uFyVE
hRqB6k3SZ9r BQ2t p+oH4h1MCg YEANUF f Why JCB4gHCr Ut mOOvynVhl 9JRUMJ90y k
gPdb20GLAL6bxhY41 g51 8HhFbMOKELNYt nZl UQURgj OzJqo8i o7HZI AQU7bl 645W
q8hEf 2| nct Aa/ 13t 4Yv2l TpGxMp4BneMI2UnZz174AspxLe9dKzl Wevl Hx8O7r KU
Ucr GP18CgYEA0A6Ub9DI y4aJSydhl oDi chGSBlcr wGangQxoVCqglv XVA0022BW r v
XXBgOOWW2OOZhhFW QqJym dRHf V1bCAcj 7m6K5Qor US6MOVF Pbz Mrsgwl 6y uJW
HE6YNsWHTj Qkndf j 51vABNobTGUvUT91r Dwr g5924Szj QcBksph7Zchg=

----- END RSA PRI VATE KEY-----

Relay IDs:

® DevSite01
® DevSite02

Development Victor

Private Key

http://dev-services.urbantla.com/agrastore/api
https://bigsense.io/pages/createpage.action?spaceKey=it&title=AgraData+XML+Format&linkCreation=true&fromPageId=327689
http://penguindreams.org/blog/signature-verification-between-java-and-python/
http://penguindreams.org/blog/signature-verification-between-java-and-python/

————— BEG N RSA PRI VATE KEY-----

M | Eowl BAAKCAQEAqa2nvOSoxGtDzeEhi 5Ej gNROZ+/ qch7i PzMzsNLK Ty COATi r

0l sMasWHdk Vpf uUsvqJ 6k FngUPBI gzgHZz p+LvQd1CS21 Odv My QSv HH2E3CHK 9P6
Chdw0OgLcnmX70s51 ar gA2ZglaeOy3091 uzYnYTP8ULj CH vuNAXN1UCX7vj 92227
6D20hUPEWQU GCp4 Df k3YECEs Xf M7aSLsc FhXVBDk 0Ay XD1OUKxOF/ DAI r uf g5k8B
n6Jj ODDxat S35zqgbayt 23gacFxt zuCgE6SQGTWA/ uj 95CX893/ 1i dZLUZ80G3sj C
09WG 8gj kg+cl z2Qnwej r GhQaTl r f 90 o+czVWw DAQABAol BAC/ Uf dYndt NAw+TD
MbuOHD3y qC8MACY3nui SU3v+pi 71 8vCV90CQW Ppr HWOzj EERUF5Br Qy 8vpGBR3
NMVBKI At ULQdi GF 27h4MZBhe MANr 1+6 HWPVENE nk THNTwnnM Pz 9ot 22f yM CoedO
6Ket Ski CSPvQORgguLP73uzgQcgk/ oj PdUyf Ul / UTf r 1Z6f | 9f Gh3Wki WDh4O2CF
GI0l g xaR7j R | TN7gGDO39qpt r FxME3y 19dp7MoBpyr OVK60z 5y A7v0j Xn8bPVD
r1 BTak27750t c+sYTIl i GEg1TsPVWWG Zsj Xau2uDARbVeQs 67Y7R+elznyhsJy(

Ds27f 3ECgYEAL5F8r zj ut zZWOWsxhBPssi U2dJ 7wu9uH2w5soQ bgvKMCowepz BevB
z/ W Dr 4r | vSAhvQ2nRj JNB6DIV+Q4vCl TU j wiM kcHavPr/ 0eoDNVURLFf ALbi

nf 8uMSUJEG Nzl qoR5a59qs/ KIN+K9bzdgf ycq2K9/ QcWibhHYi 4As8CgYEAy YDC
4B5all KxQRuuyB+UGFXi yD4NVg0OXt nct yJqt C3SE+NWK| / / | pkt Lgmal st UJt OE
uj 2ywl I'i 8y5msj OVMIKYTPa0osuXAB+2MPn6bXdN8l 9NORXGhQr88s X7 Pt V8V
JZ4hrj 741 HAj QILi | OYab10kwt pyoD7J+qPJGUCgYAW i exdxQkL4dr ND/ F7QFu
Ko66nHWbO/ gf j VgwgGekr quxnmLDsxCzPri DyH xdnQLnVI 2TG n6nZt dc34U2Zi

7nago75Rs20qV0uzgRqWe4LHLIFA4G Lt 8Kw2onnbM\WTKMLs5t znD 6Rf Fge6Hr h
R2KPXI Ki DUEE9hVqpdnDMQKBg FulGXws 9Dgu9HNAaRy 1mo4001 DAFNOBMMCW Chs
ZonYbMsWZWGB2 Q4Uuaqz ZDf 1hTsxY6ghl G 1MepGY5a5mdZk KUr x8b5vD8t Zgnf T
7ZDSgowz qdPmCCf gDa+k QYYONW3dg19ah90o3v7Maos99nKot xFG Av6pb6et Qu4
cLcdAoGBAIQDMICQ GKDZI kdgs MrFAvQnt KEhkMz Az 3sr Rhi SHLITF7Rdr d3VaYO0
wazK+Ni 7V4Zd2vogd8PYCsygqnRxsaTBk7vYbgBunnplakqgn/ r RgbGsJZOXEOzQ

agRANYCDz6j cpzazkxMmaToF+pf 6¢cRV71 eyup6XpBhl FnLat 6+uQO

————— END RSA PRI VATE KEY-----

Relay IDs:

® VictorDev01l
® VictorDev02
® VictorDev03

Development Sumit

Private Key

----- BEG N RSA PRI VATE KEY-----

M | EpAl BAAKCAQEAXK2pFZRIs7gnk0+/ a62HnHUVT18aK+ceA7r | SJFal gwS8pw
j QvbBNi sZSf yPi Ji 4TQVb3t OU+NCBA2NH5Sr THAJ D9b+g1y3Uf AAxgDcquCGx/ | 6

nPxt SNMRC6OC+9InLpl e4Yl hxB3f T/ gZoBV+YGZZW VeNosBI zt | xeSyX9wqDwi Pa
bT3FT2r YVToj kel QuMTi BuSAZkEq+sPKFXW3LFi +BI 7r r pf FDOKF4FV3uHATsoQx

gcVoPc TVA+Z80F+WJUT4DNu/ Nr ndeBKZ4c4nk 3x WHCMPPFI nnZzohUYQ Jt Zt B9s7

nb2CGxvvédot nZJ164/ r xOv5Zt zU21cf WeZoBuwl DAQABAoI BAEUW 16kx3r XYkdz

bPYVof mMNOcd1gr cPQOpXal+GrlT9yeFFqkVWRbd0cB2gq9HNW BHbRHr Enb5Vs GnKf

F/ yl 76c9+pbg0Zp5Phf 1MABaGy mXFy EzMa2nj +gBbMO69r nBYhX9f dK1l FniQTxR
KccBbl 9GnkgPsj wCU4ADW ugWkl bNOA] NUc Tt NzpCkTGuwt Bl szGL7UZzJG5St Ldr

m try5R0r Zy98Q02LdoMX8y| ki VgzcDFAFSI Mk COABON6EE] GEv6dzt Gzj | j uxLk

0U8/ 11 THHg94r DXDj | SY6CI UxZgKLhg1SvgsNbj xYQOng cHt H D6+M Mz Cl udxur

06UHJ6ECQ YEASt C82EQIOPK+JbQbGe Ekx+H+QWVI ulWPZt Hnf t gLLbaf nKJ9g/ quq

3r U Rt EqOr k6pFHOL36CeqAeCef xS11vQQ zsHn6s3VWbOWO7 O wxnl 30Vx6gCVW
sSE1l ZDccownx/ Z+onKaPGGEq1NCGh3r WKpbGf VMDr 2G8f zy xf P7DQBs CgYEA2i MD
UsHZJ3Ct MATWAC UTRRDBAWLAT83TcL3kxh7P4/ 3x5h+x| 535El 8JsH87j wYl vYYv

Z80i Li Nymhoj nAbc98XBCRGxj WGLpYr 5Pt 4f QSTOupj 8CX2Np9wY/ KI | 61 1ThFea
G T1Ri 9hz56078p25g5F/ 0g+Y+BAn4y8SFdz29ECgYBXoAc RULbkbr r ZNXbUYC7G
¢c1VDGeCpwi 50BZCYW dCGeuWbGs CQBNmosRS7j WDgi 5JE5PQNAbOSr SArj 08) Owd
NW QG 4i 5eHnQvynTaA54SAQj hUzcPl oFPnZAdM UhDwaBxg3BCXAMkx3ngg+kdH
WZVEHK 1y B3i 4FSKMgW8/ 4QKBgQCFYNa2K2EKBH gy xRl f 2Lw7/ XaXxr bs PaAERwS
J83I kf i +xNJJ60XH4i 4ChU dgksF125VAIDMIVAleZYcaPXj aj 9F1FPEJuJyfi 84
i Yi CxJ3/ d vBUcuzv5hnoJ2dPAy89vN7MPpoF8Cuul PX6uwYbt HNeHDt kM yXxZK6
i P6GyQKBgQCX1r OVbEkp60j t BhmAbny DehNDgf AGNDLTDNhv Zpwiry nyvTHgi XAt L
vzPTveU8j A6STqUskWt gl sov71 +3VWeWwY5gRdi El NFOa9P71/ k6Ck6NWF 8k +CcEd6
t | Euhdgckax+l 1UevzyAB66wcpgCux UFPI r +PHLUVHaGLWCl ZgQRAg==

————— END RSA PRI VATE KEY-----

Relay IDs:

® SumitDev01l
® SumitDev02
® SumitDev03

AgraStore Web Service Development

Introduction

This document is primarily for Parth who will be taking over development of the AgraStore web service and the web interface to it. However, everyone else
involved in development should really look at this document to at least be familiar with how the web service is developed. There was a previous project
known as the Altaspace Development Environment that attempted to automate the creation of a development environment, however this project was never
really finished and it's probably better to create your own environment anyway. This document will go through the process of setting up a full AgraStore
development and testing environment and go over some of the basics of expanding on the existing frameworks.

Code Checkout

Create a workspace. You will need to checkout two different applications, AgraStore and the AgraStoreTester. You will need to be on VPN in order to do
this.

git clone greenboard. urbanalta.com/srv/git/AgraStore
git clone greenboard. urbanal ta.com/srv/git/AgraStoreTester

Dependencies

You will need to install the following:

Scala 2.9 SDK (Compiler)
Tomcat6 or Tomcat7
Apache vy

Apache Ant

The Apache lvy jar file needs to be accessible to ant. If you're on Linux, it's best to place it in your home directory under ~/.ant/lib. For Scala ant tasks, set
the SCALA_HOME environment variable. The ant build.xml checks that environment variable in order to load the Scala ant tasks.

Building

You'll need a property file. | typically place them in the env directory. There are two examples in env/dist for Tomcat and JBoss. | would use Tomcat as |
haven't developed on JBoss in a long time and the last time | did, it would crash when loading some of the AOP stuff.

appSer ver Locat i on=/ opt/ apache-tontat-7.0. 19/
servl et Li b=${appServerLocation}/lib

depl oyDi r =${ appSer ver Locat i on}/ webapps
connectionString=jdbc:jtds:sql server://host: port/database
depl oyFi | e=war

dbUser =user name

dbPass=passwor d

dboUser =user nanme

dboPass=passwor d

securityManager =Si gnat ur eSecur it yManager
envi ronnent =devel opnent

drmbs=nssql

The appServerLocation isn't used by the build.xml itself, but is just a reference for the other attributes. The servletLib directory is used to build against the
servlet API. Everything else should be pretty self explanatory. The build.xml takes these attributes and alters the spring.xml located in the com.urbanalta.
spring package. If you change anything in the property file, be sure to do a clean before any other tasks. For further information, please see The Glue
(Spring Dependency Injection). To build and deploy your project with the given property file, use the following:

ant -propertyfile env/<your property file> depl oy

Database

https://bigsense.io/pages/createpage.action?spaceKey=it&title=Altaspace+Development+Environment&linkCreation=true&fromPageId=327744
https://bigsense.io/pages/createpage.action?spaceKey=it&title=VPN&linkCreation=true&fromPageId=327744
https://bigsense.io/pages/createpage.action?spaceKey=it&title=The+Glue+%28Spring+Dependency+Injection%29&linkCreation=true&fromPageId=327744
https://bigsense.io/pages/createpage.action?spaceKey=it&title=The+Glue+%28Spring+Dependency+Injection%29&linkCreation=true&fromPageId=327744

The way databases are done is the dmbs attribute in the property file is configurable for different DB types. Currently, I've only supported Microsoft SQL
(mssql). In theory, the only thing needed to support a new database is a new command file (com.urbanalta.agrastore.db.<dbms.commands>) with new
SQL statements. There is a DDL directory in the root that's copied into the final WAR file. In this directory you will need to run the 000-Initialization
bootstrap manually on your MS SQL server instance. Change the usernames and passwords in the file appropriately and make sure they match your
property file above. It's important that the passwords for the two users match up. The dboUser need to have full permissions to CREATE and DROP tables
while the dbUser only needs to be able to INSERT, UPDATE, SELECT and DELETE data.

The rest of the DDL files, 001, 002, etc will be run automatically in sequence. Note that some DDLs are only run for the given environments as define by
the env variable in the property file. The DDL loader is run as a Servlet Listener which you'll see in the web.xml. There are two listeners that start in order,
the first being the Logger and the second being the DDL loader. They only run once, in listed order, when the web application starts.

Testing

To test your deployment, go to the AgraStoreTester project, edit the config/general.config file to point to your local Tomcat instance and then run the
following:

./ goc. py AgraStoreMaster Test Set

You can also add the -t option for trace information. If everything is setup correctly, you should see a slew of OKs. If there are any FAILs, check your logs
(by default, located in /tmp/agrastore.log).

Deployments

Deployments are all automated through Jenkins located at http://greenboard.urbanalta.com:8090 on the VPN. When a git push is used on the AgraStore
repository back to the greenboard server, Jenkins automatically starts building AgraStore. It uses property files located on pascal.urbanalta.com:/urbanalta
[build/properties for development, staging and production. After it builds, the development version gets pushed to melbourne, our development server. If
that deploy is successful, a staging deployment tasks begins the staging deploy. Before deploying to staging, it runs the AgraStoreTester on the
development web service endpoint http://dev-services.urbanalta.com/agrastore/api. It will only deploy to staging if all the test cases pass. The
production job must be started manually, but it starts out by running the test cases against staging and will only deploy to production once all the test cases
pass.

WA search

Jankins AgraStors ENABLE AUTO REFRESH
[#add description

= Mew Job

i AgraStore | Al AltaPress | Python Modulks | Relay Deployments | +
& poone s W Name . Last Success Last Failure Last Duration
> Buld History —)

g @ AgraStora 2 days 19 hr (#25) MNiA 2 min 28 sec @
Edit View .

i = . F
® oA ENEw Q AgraStore (deploy to development) 2days 19 hr (#12) LA 1 min 29 sac @
i . ins hi 9 F
O_. Project Re tions i Q AgraStors (deploy to production) G days 13 hr (£2) & days 14 hr (#1) 57 sac @
&~ | Check File Fingerprint -

u AgraStore (deploy to staging) Gdays 13 hr (#21) 2days 19 hr (#22) 1 min 59 sec @
Manage Jenkins ’
&
leon: SML
Build Queue Legend [[)RSStoral [RSSforfaiures [T RSS for just ltest buids

Mo buikds in the quaus.

Build Executor Status
Status

1] Idke

2 Idke

E Help us bealize this pags Page generated: Sep 23, 2012 7:38:51 PM REST API Jenkins ver. 1.478

Adding Features

Automated testing is essentially for developing a high quality web service of any size such as this one. Whenever adding new functionality, you must
add automated tests to deal with both all the success conditions and the error conditions that can be accounted and tested for.

Scala as a Language

http://greenboard.urbanalta.com:8090
https://bigsense.io/pages/createpage.action?spaceKey=it&title=VPN&linkCreation=true&fromPageId=327744
http://dev-services.urbanalta.com/agrastore/api.

The way the current build.xml is configured, both Java and Scala files are compiled within the same build allowing the two languages to work
interchangeably. However, it's highly recommended to write everything in Scala. Scala adds what has been missing from Java for the past several years
and implements many of the things desperately requested in Java 1.7, but that were never delivered. The syntax for properties is better (legacy support
can be added, as seen in the code that utilizes Spring dependency injection, with the @BeanProperty annotation), the code is more readable and it's
generally just better to work with.

New Data Handler

One of the tasks that has been discussed has been changing out the database backend for a NoSQL data store. The above mentioned environment
variable in the property file allows for specifying new DDLs and SQL files for a different RDBMS system. If you want to interact with a non-relational
database, you'll have to create a new Database Handler class that extends the existing Data Handler Trait (Interfaces are Traits in Scala; similar but much
more powerful). You may need to create a DBO Handler extension as well if your data backend requires scheme to be created or updated (or a blank one
if no schema is necessary). These break with the traditional SQL model, so it's best to make these changes directly to the Spring file and add in a new
property to switch back and fourth between the traditional SQL backend and a NoSQL backend.

Adding Storage

Another task that has been brought up is adding support for storage backends such as DropBox. There are stubs | have created for this purpose, however
| forgot to push them back to the central git repository before | had to send my laptop off for warranty. | will do so once it returns.

Deployment Manager (Requirements)

Introduction

Software needs to be developed for managing and deploying software updates to all our routers. A simple deployment manager was made for the Green
Learning Station written in Bash. It was originally installed on Odyssey, but has since been moved to the /srv/deploy/DeploymentManager directory on Sydn
ey located at the East End Design Centre. It is a very basic set of Bash scripts that preforms the Installation using the old method where all packages and
applications are installed to the USB sick. The new Installation is now possible using packages that are automatically built and placed at http:/sydney.
urbanalta.com/builds/

There are two types of deployments:

1. Deployments made on batches of routers that will be distributed and installed at a given customer site. These would be large scale, multi-unit

deployments
2. Deployments to existing routers that are already configured with a unique identifier; that have a known identity.

These two ideas could possibly built into the same application, or they could be two different programs. They are fundamentally different, but may share
some common tasks such as deploying and installing ipk files. The following document outlines what | think should be general requirements for both type
of deployments. Feel free to make up and edit this document with other requirements that may have been overlooked, or add notes in red for requirements
that you think may not be necessary.

General

® SSH keys should be used to securely connect to routers.
® A single public/private key pair can be generated per customer and stored in the database, with the public key being deployed to the routers autho
rized_keys file
® This application or set of applications could be written as a console app or a web app or a web frontend with a service backend.
®* My recommendation would be to write a console python application that uses ncurses and either has its own database or communicates
with a REST webservice to data

Mass Deployment

In a university computer lab, deployments are sometimes made to machines by using a disk imagine application and broadcasting an image to ever
machine in the lab. Typically, the lab must be disconnected from the university network during this to prevent the rest of the network from getting flooded
with broadcast traffic. While this system will not be transmitting the same volume of data or be in broadcast mode, having routes on a separate private
network would still be necessary. New routers from Netis come with DHCP enabled. My using a software DHCP server on a Linux deployment machine,
each router connected to a closed network could easily be identified by scanning the DHCP logs for assigned IP addresses. One could assume every
machine on this closed network was potentially a router that needed to be flashed and configured.

Basic Requirements:

Have some type of Linux system (small workstation, laptop, embedded device, possibly another router even) have two network cards.
One network card would be for the Urbanalta network. The second would be a dedicated private network just for attached routers.
Setup a DHCP server to assign addresses to only the closed network

Scan the log files for IP addresses

Attempted to telnet to each router given an IP address to see if it needs an initial password set

Copy appropriate SSH keys to each router to allow for secure remote administration and updates

Install ipkg files for all Urbanalta applications and dependencies

Advanced Requirements:

® Have an identification mode where each router is selected and send a command to use GPIO commands to blink an LED.
® Have a way to label this router (print out a QR code?), assign it a title (or have an option to give it a GUID?) and add the identification
information to the database

Standard Deployment Updates.

Standard updates will need to be deployed to existing routers, or we could possibly write scripts to automatically pull updates for routers. Even with
automatically updating routers, there still need to be some type of management interface.

Requirements:

® Deploying updates to an entire set of customer routers, pulling the appropriate SSH key from the database for authentication
® Checking the version of all installed software on a given set of routers
® Redeploying an individual router (basic: just our software and packages / advanced: redeploying the core Image and then ssh into it afterwords to

complete setup)
® Note: redeploying the core image has options to protect the configuration files. This will prevent the router from going back into DHCP

mode and not being able to connect to it after update
Advanced Requirements:

® |n advanced environments where our routers must be on DHCP, query database to learn currently assigned IP address.
® Be able to preform updates in a dynamic IP environment (e.g. preform a full-flash and wait for the router to contact the heartbeat service with new

IP and identification information)

http://sydney.urbanalta.com/builds/
http://sydney.urbanalta.com/builds/

Hardware

® Sensors
® Neptune T-10
® RAINEW111

Sensors

® Neptune T-10
* RAINEW111

Neptune T-10

References:

http://neptunetg.com/products/meters/t-10-1/

http://neptunetg.com/products/meters/t-10-1/

RAINEW111

A tipping bucket rain gauge contains a funnel, two cups, and a switch. The funnel collects water and directs it to one of the cups. The two cups are
attached to an axle like a seesaw so that when one of the cups fills and dumps its water, the other takes its place under the funnel. Each time the water
dumps, a magnet on the cups activates a reed switch. If the volume of the cups is known, the amount of rainfall for a given funnel size can be determined
by counting the number of times that the switch is activated.

Advantages:

® Since tipping bucket gauges empty themselves, they do not need to be manually read.

® Since tipping bucket gauges empty themselves, there is no maximum amount of rainfall that they can measure (i.e. they can not fill up).

® Tipping bucket rain gauges have less "drift" in their measurements. (From the information, it is not clear exactly what this means. Perhaps this is
referring to the fact that they do not have to be measured and emptied manually which reduces inconsistencies in the measurements.)

Disadvantages:

® Rain that is gathered but that is not sufficient to tip the cup (e.g. rain collected near the end of a storm or very brief rainfall) is not measured. If this
water is not removed or evaporated before the next storm, it will be incorrectly counted as part of that rainfall. This could be mitigated by using a
strain gauge to measure the weight of the cups and calculating the amount of water in a partial cup.

® Since it takes a finite amount of time for the cups to switch when one of them empties, during a heavy rain; some water will be lost. This could be
mitigated by creating an algorithm that determines the rate of rainfall from the switching rate and accounts for this loss.

® Without calibration and maintenance, measurements will drift overtime as dirt or other substances build up on the cups and other components.

® Snow and ice is a problem since it can quickly cover the funnel and stop any further measurements. When the ice eventually melts, the water will
run into the cups and give an inaccurate reading. Heated gauges are available to mitigate this problem. However, we are not interested in
measuring snowfall, and melted snow contributes to runoff; therefore, this is not an issue.

In our implementation, we are using the RAINEW111 rain gauge produced by RainWise Inc. The funnel it uses is of the standard size used by most
personal weather stations; therefore, we can feed our data to the various associated weather project (Weather Underground, etc.). The gauge measures
rainfall in hundredths of an inch increments. A digital counter/indicator comes with the gauge which will give us a good visual reference when setting things
up. The number of times the read switch is activated will be monitored using the DS2423 1-Wire Dual Counter.

References:

http://en.wikipedia.org/wiki/Rain_gauge

http://www.usbr.gov/pn/agrimet/precip.html

http://en.wikipedia.org/wiki/Rain_gauge
http://www.usbr.gov/pn/agrimet/precip.html

Software

Our current software technology stack consists of the following
Operating Systems

OpenWRT - Embedded Linux Distribution (used on routers/sensor relays)
openSuse - Linux Server Operating System

Windows 2008 Server

Server Software

ArcGIS - Geographical Mapping

Confluence

Databases

Microsoft SQL Server 2008

MySQL

Programming Languages

Python 2.7

Python 3.0

Scala 2.9/ Java 1.6

https://bigsense.io/pages/createpage.action?spaceKey=it&title=OpenWRT&linkCreation=true&fromPageId=327695
http://opensuse.org
http://www.esri.com/software/arcgis/index.html

Agranet build instructions (1-wire C Drivers)

1. Download and build our latest version of OpenWRT.

When building, make sure that libusb is included in the tool chain libraries
2. Check out the C drivers from our git repo

The 1-wire drivers are in a git repo called agranet

use:

git clone <adnane>@JRBALALTA@dyssey. urbanal ta. conf agr anet

3. Edit agranet/builds/libusblinux/Makefile
You must edit the following makefile variables to the correct paths in your development environment:

® OWPRE = <path to OpenWrt build root>/staging_dir
® PRE = <path to agranet root dir>

For example, the variable defines in the makefile should look similar to this (lines outlined in red MUST be changed to reflect your specific environment):

OpenWrt build paths

OWPRE = /home/ryan/Development/openwrt-trunkl/staging_dir
OWTOOLS = $(OWPRE)/toolchain-mipsel_r2_gcc-linaro_uClibc-0.9.32
OWINCL = $(OWPRE)/target-mipsel_r2_uClibc-0.9.32/usr/include
OWLINK = $(OWPRE)/target-mipsel_r2_uClibc-0.9.32/usr/lib

Use the OpenWrt Compiler
CC = $(OWTOOLS)/bin/mipsel-openwrt-linux-gcc
AR = $(OWTOOLS)/bin/mipsel-openwrt-linux-ar

directories

PRE = /home/ryan/Development/urbanalta/agranet
APPS = $(PRE)/apps

COMMON = $(PRE)/common

LINK = $(PRE)/lib/other/libUSB

#SHARED = $(PRE)/lib/general/shared

#CFLAGS = -DDEBUG -Wall -I $(COMMON) -I $(LINK) -DDEBUG -c -static
#LFLAGS = -DDEBUG -lusb -| $§(COMMON) -DDEBUG -g -0 $@

Modified for OpenWrt
CFLAGS = -DDEBUG -Wall -1 $(COMMON) -1 $(OWINCL) -l $(LINK) -DDEBUG -c -static
LFLAGS = -DDEBUG -L $(OWLINK) -lusb -1 $§(COMMON) -1 $(OWINCL) -DDEBUG -g -0 $@

AgraSurvey

AgraSurvey is the Python2 client designed to run on OpenWRT and communicate with the AgraStore web service.
Source Code (Web): http://sydney.urbanalta.com/cgi-bin/cgit/cgit.cgi/AgraSurvey/tree/

® |nstallation

http://sydney.urbanalta.com/cgi-bin/cgit/cgit.cgi/AgraSurvey/tree/

Installation

Current

Currently, the production installation of the AgraSurvey application is in a structure based on the limitations of the earlier 4MB file system of the older
OpenWRT firmware we used. Because of that, both AgraSurvey and its Python dependencies are located entirely on the USB Flash Drive. The folder

layout is as follows:

@ Please refer to the depreciated documentation for how to install the software using the current setup on the OpenWRT Installation on Netis
(NW718) page. Please not that this page is very out of date and is only for reference.

mntfusb

Packages (Python & Dependencies)

AgraSurvey bin
include
etc var agra agra.py agranet
(configuration (logs, licati
files) buffers, (app cation
count data) oncia)

In addition to this structure, there are two ways to start the AgraStore program. One is to call /mnt/usb/AgraSurvey/debug.sh which loads the application in
the foreground with debugging information output to the screen and the second is using the service initialization script /etc/init./d/agrasurvey which was
made by Unknown User (randerso) and mounts the USB drive on router setup, then starts the AgraSurvery application as a background service.

The python and additional dependency packages were originally installed to /mnt/usb and then archived. This archive is then deployed to the USB drives
with the AgraSurvey code. This is not the ideal way to handle installation and was done due to the mentioned size limitation.

Future

In the current OpenWRT firmware, we have 16MB of space to work with. This is more than enough room for AgraSurvey and all of its dependencies on the
flash memory of the router itself. The only things that need to be put on the USB storage would be log files and possibly the external buffer file once it's
implemented. The following is the idea layout for AgraSurvey, following standard Linux conventions for file locations.

https://bigsense.io/display/~randerso
https://bigsense.io/pages/createpage.action?spaceKey=it&title=OpenWRT+Installation+on+Netis+%28NW718%29&linkCreation=true&fromPageId=327760
https://bigsense.io/pages/createpage.action?spaceKey=it&title=OpenWRT+Installation+on+Netis+%28NW718%29&linkCreation=true&fromPageId=327760

fetc

/usr/libfagrasurvey fusribin/agra.py

(application

init.d/agrasurvey etc/agrasurvey code)

{configuration)

In this structure, the Python packages are not mentioned because they are installed directly to the root filesystem using opkg. Furthermore, the opkg tool
should be used to create our own packages of AgraSurvey. We can build these using the Jenkins build tool and have them setup so they can be deployed
automatically to development environments.

Smart Vision Analysis

Computer vision, machine learning, statistical modeling, cloud computing.

Web Application Requirements (Draft)

Introduction

This is a basic outline for a requirements and specifications guide for the new Urbanalta web application. Our current application is written in Flex/Flash
and works entirely within the client's web browser. We want to move to a server side based application infrastructure that runs on our existing Linux web
servers.

Platform

As of now, we (Unknown User (randerso) and Sumit Khanna) are exploring the following frameworks:

Pyramid/Pylons (Python 3 Web Framework)
Lift (Scala)

Spring MVC (Java)

MVC3 (.NET/Mono for Linux)

Initial Thoughts

Looking at general usability, there are several things | think we should do that diverges from the current web application implementation. Things like live
data seem cool, but aren't really necessary and may put and undue burden on the server. Instead we should focus on showing data only on requests. The
map is a good idea, but data shouldn't be shown as streaming. Instead each relay should simply be a point and clicking on that point should bring up a
popup of the data in a sortable table format within a AJAX box (possibly using the JQuery Ul boxes).

Security

https://bigsense.io/display/~randerso
https://bigsense.io/display/~skhanna

Web Servers

Introduction

Web servers can either be accessed directly, through a Load Balancer (HAProxy), or, in the case of a Tomcat Java Application Server, via the AJP
protocol typically accessible on port 8009. For Urbanalta, all public access to web servers first goes through the HA Proxy load balancer on Thales. From
there it may be connected by proxy to an Apache Web Server or a Tomcat server (typically mapping incoming connections on port 80 transparently to port
8080 on the Tomcat server).

HA Proxy

HA Proxy configuration is on newton.urbanalta.com and located in /etc/haproxy/haproxy.conf. It's a plain text file and the configuration is very
straightforward. Connections are sent to servers baed on their hostname and path specified. All SSL traffic must go to one server as HA Proxy is not
capable of SSL off-loading and it passes SSL connections straight through as if they were normal TCP connections.

AJP

Apache Tomcat servers can communicate through their own binary protocol known as AJP. It typically runs on port 8009. Typically, Java servers "sit
behind" a front end web server. The Java server only runs the application server while the front end web serves up images and content. Typically the front
end server maps particular paths, known as application contexts, to the Java servlet engine. The apache module is known as mod_jk. On the Linux
servers, the following must be done for AJP configuraiton:

® Jetc/apache2/conf.d/mod_jk.conf - Location of mod_jk configuration file
® /etc/apache2/workers.properties - List of worker Java servers that the Apache server will forward requests to
® /etc/apache2/vhost.d/*.conf - The individual virtual host configuration files contain the MountJk

Green House Data Web Systems Diagram

https://bigsense.io/pages/createpage.action?spaceKey=it&title=Load+Balancer+%28HAProxy%29&linkCreation=true&fromPageId=327686

4
I‘I‘I‘--\"'\-n-
s Green HouSe Data
- Fireawall
L.
Mewton

(HAProxy Load Balancer)

HAProxy
443 ALL 851 Conmections
Euler443 (Apache)

HAPToxy
staging-services_services.urbanalte.com/egrastore” - Leibnitz:8080 (Tomcat)
staging-services_urbeneta com®™ -= Leibnitz:B0 (Apache)
staging.urbanetta.com®™ -» Leibnitz:B0 (Apache)

HAProxy
servicas.urbanalte.com/egrestore” -= Euler:B080 (Tomcat)
services.urbanalta.com™ -= Euler:80 (Apache)

urbanghta.com®™ -=> Euler:d (Apaches)

(offline) i ~
T
NS -
. A —
A"f e il
i - Euler
Leibnitz e]
- Froduction Apach
Staging Apache Pescel (W, u?b:ﬁwma u::anrll]
{staging.uranala.com| Tomcats wi Sun Java Production Tomesid
~ Staging Tomcatd [Confluenca Wiki)
(staging-services.urnanala.com) {Barmboo Build) —|

(hittps) urbenala comisiki*

AJP connector fo Tomcat (B8009)

Bamboo is only acoessizie from VPN at the addrass
hitpo/ipascal urbanalta.com:B0B0/amboo

East End Design Center Web Structure

AL

East End Design Centear
Firgwall

Dievelopment is only accessibie
from VPM

[dev.urbanalta.com)
Dev Tomcats
(dev-services.urbanalta.com

	1-wire C driver (agranet) Communications Protocol Specification
	GPS Usage
	Home
	Analysis
	Sensor Project - Initial Analysis

	Deployment
	DeployMan
	Router Deployment

	Development
	AgraStore Testing Private Keys
	AgraStore Web Service Development
	Deployment Manager (Requirements)

	Hardware
	Sensors
	Neptune T-10
	RAINEW111

	Software
	Agranet build instructions (1-wire C Drivers)
	AgraSurvey
	Installation

	Smart Vision Analysis
	Web Application Requirements (Draft)
	Web Servers

